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for Data Modeling:
Workflows, Metrics, Impact



We’ve spent years building data pipelines, and one process never changes – moving from OLTP  
to OLAP. Even though transactional systems capture every event precisely, reshaping that into  
an analytical schema means remapping tables and re-running validations every time a new 
source or requirement shows up. It’s the boring part nobody talks about, still it takes up to 40%  
of data engineers’ time.  

When LLM-powered multi-agent systems began appearing in production tooling, we didn’t 
accept the hype headlines about “replacing” engineers. Instead, we asked a practical question: 
can AI really automate the repeatable pieces of data modeling and integration?

Over the past 2 years we embedded multi-agent setups 
into pre-prod and production pipelines and used them  
for focused workflows:

Semantic extraction ERD generation Schema/field matching

Test-case synthesis Drift detection

What we found from the pilots?

AI agents can produce concrete outputs: ERDs, 
DDLs, schema mappings with example rows 
and confidence scores, or fix suggestions with 
smoke tests, which tend to shorten the entire 
path from the requirement to production-
ready model/schema up to 3 times.

This whitepaper is our attempt to make that 
experience actionable. We’ll walk through the 
workflows we used, the metrics we tracked, 
and the design patterns that make agent 
outputs reviewable and auditable.
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In practice we started getting usable first drafts in 5-7 days, instead of weeks. Of course, that 
didn’t mean we could skip the human review step. E.g.: business rules (billing edge-cases, legacy 
flags, spreadsheet exceptions) tend to surface only when tests run or a domain expert looks at the 
results.

Input

Human Review Outputs

Semantic Agent

Structuring Agent Logical DesignerValidation Agent

User Requirements,  
Sample Objects, Metadata

ERD DDL Data Dictionary

A semantic extraction agent (LLM + prompt templates) - generates entity/attribute 
candidates.

A structuring agent - normalizes relationships and proposes keys.

A logical-design agent - transforms that ERD into normalized tables and a set  
of suggested keys and denormalizations.

A validation agent - generates test queries and synthetic samples to validate the 
proposed model and report concrete failing cases.

Automated Schema Generation
Here’s our first workflow, the one we employed on nearly every project: agents ingest 
requirement text, sample extracts and existing metadata, then run a sequence of prompts and 
verification steps to produce a conceptual ERD, a normalized logical model and executable DDL.
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From our pilots

Pipelining schema fragments through AI multi-agents (extraction – modeling – validation) 
produced first-draft schemas and DDL up to 5x faster than baseline, and reduced false 
positives by 78%.

We also integrated some complementary features into the generation flow (the list below). They 
target the manual “detective” work that slows modelling and make agent outputs reviewable, 
testable and safe to apply.

Relationship inference

Agents analyze sample values, distinct counts, co-occurrence and naming patterns to propose 
candidate joins and foreign keys. Each proposed edge is shipped with example rows and a confidence 
score so reviewers can see why the join was suggested.

Validation & QA

The QA agent runs normalization & lossless-join checks, representative queries and synthetic edge-
case tests. It emits failing test cases (with example rows) and suggested fixes. These concrete failing 
cases are what engineers review – not just warnings.

Documentation & Explainability

Every inferred field is accompanied by a short data dictionary entry and a rationale (e.g., "matched on 
SKU pattern + 95% value overlap"). Deterministic outputs (ERD snapshot, DDL, data-dictionary entries) 
plus example rows make agent suggestions auditable and easy to import into catalogs.

Indexing & Performance Tuning

Usage-analytics agents analyze expected query shapes and cardinalities and run quick micro-
benchmarks in a sandbox to recommend indexes, partitions or targeted denormalizations.
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Schema Mapping & Integration
Integration is always about manual data work. Differing column names, encodings and small 
value quirks turn one-off ETL into debugging sessions. Below is a matcher we built to make 
mappings repeatable and easy to operationalize.

For each candidate mapping it returns a short package: the suggested mapping, example row 
pairs, overlap percentage, a similarity score, and a suggested transformation snippet. Borderline 
mappings are surfaced in a review queue with this evidence so engineers can make quick 
decisions. Canonical schema outputs and the generated SQL/PySpark transforms are formatted 
so downstream ETL jobs can pick them up with minimal rework.

At a high level the matcher:

1 Сomputes vector similarity between columns (name + samples);

2 Compares cardinalities and value overlap;

3 Applies deterministic heuristics (date patterns, ID formats, codebooks).

Input Matcher

Data processing

Canonical Schema  
& Transformation Rules

Consumers

ETL

DW

ML
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From our pilots

We’ve seen a hybrid matcher (embeddings + rules) move a large fraction of mappings into an 
“approve with evidence” state.

Auto-mapping ±20k assets with 98% precision in 9 minutes on a single deployment;

Natural-language (NL) discovery interfaces speed domain lookups by up to ~100x in 
some workflows.

Relationship inference also helps with canonicalization. When several sources contain related 
entities, agents propose consolidated entity definitions and candidate joins — each proposal 
comes with example rows and a confidence score. Those proposals are fed back into the 
canonical schema so the model gradually gets more complete and consistent.

We expose the canonical schema via a simple natural-language layer so business users can ask 
for fields or joins in plain English. The system returns the suggested mapping plus the evidence 
(example rows, similarity and overlap stats), so ambiguous translations are transparent and easy 
to review.

Here we gate changes per field by confidence:

 Auto-apply Surface for quick  
human review

Block and route  
for manual mapping

High (>0.9)

Medium (0.7–0.9)

Low (<0.7)

All mappings, evidence snippets and rationales are recorded in the metadata catalog (with links 
to sample rows and any generated transform). That makes troubleshooting way easier.
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Self-Healing Pipelines
Few things break pipelines as often as schema drift. It could be a renamed column, a new 
optional field, or a subtle type change can silently break dashboards, ETL jobs and models.  
Here we treat adaptation like a control loop: detect change, propose a fix, validate it, and then 
either apply or escalate.

Here’s how we run the loop:

1

Monitoring agents

Snapshot incoming schema 
shapes and basic stats — 
column lists and types, null 
rates, distinct counts, sample 
rows.

2

Detector agents

Compute schema diffs and 
drift metrics (distribution 
shifts, cardinality changes, 
new or removed columns).

3

Remediation agents

Propose concrete fixes 
(rename + cast, mapping 
entries, backfill queries) and 
attach a confidence score 
and a recommended action: 
auto-apply, deploy, or human 
review.

Live Source

Deploy

Monitoring Drift Detector Auto-
Remediate

Human Review
Engineer Action

Smoke Tests
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Though, schema drift fixes can be risky. We’ve learned the hard way that “just auto-fix everything” 
creates more incidents than it prevents. So, we suggest to keep this basic set of safety rules:

Treat AI proposals as first-class outputs — reviewable, explainable and runnable in isolated 
sandboxes so engineers can reproduce and reason about fixes fast.

From our pilots

Self-healing flows reduced incident volume and improved mean time to recovery (MTTR) by 
roughly 40%. QA agents generate the smoke tests and example rows, and every remediation, test 
result and evidence bundle is logged in the metadata catalog so downstream owners can audit 
or revert changes.

Keep auto-apply conservative

Only high-confidence fixes (clear rename with matching distributions, identical cardinality,  
or dictionary match).

Any auto-applied change must pass a smoke-test suite

If smoke tests fail we automatically roll the change back and open a ticket with the failing test 
outputs and sample rows for debugging.
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Final Notes
We’ve been running AI multi-agent workflows in production for about two years. What we already 
know is that they’re worth it: we stopped spending so many cycles on repetitive tasks and got 
those hours back for design and analytics work.

That said, AI isn’t magic. Each stack needs its own knobs: what works for one environment won’t 
drop unchanged into another. Expect to set confidence thresholds, wire in smoke tests and 
validation suites, log provenance, and keep data engineers in the loop for edge cases and policy 
decisions.

So, how to start a pilot?  
Below are 4 steps that worked for us:

1 Pick a domain

2
Set metrics and capture a baseline
(time-to-first-draft, mapping precision, auto-apply rate and MTTR)

3
Run shadow/validation mode
(generate ERDs, mappings and transforms, compare against the 
baseline and domain review)

4
Gate and scale
Use confidence thresholds, smoke tests and a rollback path; expand 
auto-apply only as metrics and reviews prove stable.



Need help with architecture, tooling,  
or just an experienced data engineer 
team to run alongside you?
Reach out to us at Dedicatted. We’ll show you how we actually plug this into data-modeling 
processes and help stand up a focused, low-risk pilot.

Contact Us

contact@dedicatted.com

+1 437 427-1824

Canada

208-25 Telegram Mews, Toronto, Ontario,  
M5V 3Z1

Poland

Krakusa 11, Cracow,30-535

Ukraine

Heroiv UPA St, 73J Lviv,  79000


